Приведите пример трёхзначного натурального числа, которое при делении на 4 и на 15 даёт равные
ненулевые остатки и первая справа цифра которого является средним арифметическим двух других цифр. В ответе укажите ровно одно такое число.
Знаешь ответ?
Чтобы оставить ответ, войдите или зарегистрируйтесь.
Ответ или решение 1
Ариша Котик
100a + 10b + c = 4x + y = 15z + y
A + b = 2c
X = 15z/4 = 3,75z
10 (10a + b) + (a + b)/2 = (20 (10a + b) + a + b)/2 = (201a + 21b)/2
Z = 4, 8, 12
X= 15, 30, 45
200a + 20b + a + b = 8x + r = 30z + r = 120 + r
201a + 21b = 120 + r
67a + 7b = 40 + r
Этому ряду условий отвечает, например, число 243.
A + b = 2c
X = 15z/4 = 3,75z
10 (10a + b) + (a + b)/2 = (20 (10a + b) + a + b)/2 = (201a + 21b)/2
Z = 4, 8, 12
X= 15, 30, 45
200a + 20b + a + b = 8x + r = 30z + r = 120 + r
201a + 21b = 120 + r
67a + 7b = 40 + r
Этому ряду условий отвечает, например, число 243.
Новые вопросы в разделе Другие предметы
Январий
19.11.2023, 12:25
ЯВКУСНЫЙДОШИРАК)))))))
19.11.2023, 12:24
siddiq
19.11.2023, 12:23
Носова Елена
19.11.2023, 12:22
234567
19.11.2023, 12:21