Все
Математика
Алгебра
Геометрия
Литература
Русский язык
Истоки
Краеведение
Французский язык
Литературное чтение
Астрономия
Природоведение
Родной край
Немецкий язык
Технология
Физика
Английский язык
Обществознание
Химия
Биология
История
О`zbek tili
Окружающий мир
Естествознание
География
Украинский язык
Информатика
Украинская литература
Казахский язык
Физкультура и спорт
Экономика
Музыка
Право
Белорусский язык
МХК
Кубановедение
ОБЖ
Психология
Кыргыз тили
Другие предметы
Показать все предметы
kokareva.eu
14.05.2022, 16:58
Другие предметы

В параллелограмме ABCD точка K — середина стороны AB. Известно, что KC = KD. Докажите,

что данный параллелограмм — прямоугольник.
Знаешь ответ?

Чтобы оставить ответ, или зарегистрируйтесь.

Ответ или решение 1
Sonya Gracheva
Рассмотрим треугольники DAK и KBC. AK=KB, т.к. точка K - середина AB, KC=KD (из условия задачи), AD=BC (по свойству параллелограмма). Соответственно, треугольники DAK и KBC равны (по третьему признаку равенства треугольников).
Из равенства этих треугольников следует, что /DAK=/KBC.
AD||BC (по определению параллелограмма), рассмотрим сторону AB как секущую к этим параллельным сторонам. Тогда получается, что сумма углов DAK и KBC равна 180°, т.к. эти углы являются внутренними односторонними. Отсюда следует, что каждый из этих углов равен 90°.
Теперь рассмотрим стороны AB и CD, они параллельны (тоже по определению параллелограмма). Рассмотрим сторону AD как секущую к этим параллельным сторонам.
/DAK и /ADC - внутренние односторонние. Следовательно их сумма равна 180°. А так как /DAK=90°, то /ADC тоже равен 90°.
Аналогично доказывается, что /BCD тоже равен 90°.
Параллелограмм, у которого все углы прямые (т.е. 90°) называется прямоугольником (по определению).