Сторона ромба равна 36, а острый угол равен 60°. Высота ромба, опущенная из вершины тупого
угла, делит сторону на два отрезка. Каковы длины этих отрезков?
Знаешь ответ?
Чтобы оставить ответ, войдите или зарегистрируйтесь.
Ответ или решение 1
Кеньятта
Рассмотрим треугольник АВС.
Этот треугольник прямоугольный (по условию задачи).
∠С=90°, так как это прямой угол.
∠A=60°, следовательно по теореме о сумме углов треугольника:
180° = ∠АВС + ∠А + ∠С
180° = ∠АВС + 60° + 90°
∠АВС = 180°-90°-60°=30°.
По свойству прямоугольного треугольника:
АС=АВ/2=36/2=18.
Следовательно вторая половина стороны ромба = 36-18=18.
Т.е., в данной задаче, высота, проведенная к стороне ромба делит эту сторону на две равные части.
Ответ: 18 и 18
Этот треугольник прямоугольный (по условию задачи).
∠С=90°, так как это прямой угол.
∠A=60°, следовательно по теореме о сумме углов треугольника:
180° = ∠АВС + ∠А + ∠С
180° = ∠АВС + 60° + 90°
∠АВС = 180°-90°-60°=30°.
По свойству прямоугольного треугольника:
АС=АВ/2=36/2=18.
Следовательно вторая половина стороны ромба = 36-18=18.
Т.е., в данной задаче, высота, проведенная к стороне ромба делит эту сторону на две равные части.
Ответ: 18 и 18
Новые вопросы в разделе Другие предметы
Январий
19.11.2023, 12:25
ЯВКУСНЫЙДОШИРАК)))))))
19.11.2023, 12:24
siddiq
19.11.2023, 12:23
Носова Елена
19.11.2023, 12:22
234567
19.11.2023, 12:21