Все
Математика
Алгебра
Геометрия
Литература
Русский язык
Истоки
Краеведение
Французский язык
Литературное чтение
Астрономия
Природоведение
Родной край
Немецкий язык
Технология
Физика
Английский язык
Обществознание
Химия
Биология
История
О`zbek tili
Окружающий мир
Естествознание
География
Украинский язык
Информатика
Украинская литература
Казахский язык
Физкультура и спорт
Экономика
Музыка
Право
Белорусский язык
МХК
Кубановедение
ОБЖ
Психология
Кыргыз тили
Другие предметы
Показать все предметы
Дучесс
13.05.2022, 13:57
Другие предметы

Стороны AC, AB, BC треугольника ABC равны 3√2, √15 и 1 соответственно. Точка K расположена

вне треугольника ABC, причём отрезок KC пересекает сторону AB в точке, отличной от B. Известно, что треугольник с вершинами K, A и C подобен исходному. Найдите косинус угла AKC, если /KAC>90°
Знаешь ответ?

Чтобы оставить ответ, или зарегистрируйтесь.

Ответ или решение 1
Белоснежа
По условию задачи /KAC>90°, т.е. это наибольший угол в треугольнике AKC следовательно, сторона KC, противолежащая этому углу тоже наибольшая (по теореме о соотношениях между сторонами и углами треугольника). Сторона AC равная 3√2 - наибольшая сторона исходного треугольника ABC (т.к. 3√2>√15>1). Следовательно, угол ABC - наибольший угол треугольника ABC.
По условию задачи треугольник KAC подобен исходному треугольнику ABC. А значит углы этих треугольников соответственно равны (по определению подобных треугольников). Поэтому наибольшие углы двух рассматриваемых треугольников равны, т.е. /KAC=/ABC. /ACK не равен /ACB ( т.к. KC пересекает сторону AB в точке, отличной от B), поэтому /ACK = /BAC. Следовательно, /AKC=/ACB => cos(/AKC)=cos(/ACB).
Применяя теорему косинусов мы можем записать AB2=AC2+BC2-2*AC*BC*cos(/ACB).
(√15)^2=(3√2)^2+1^2-2*3√2*1*cos(/ACB);
15=9*2+1-6*√2*cos(/ACB);
15-19=-6*√2*cos(/ACB);
4=6*√2*cos(/ACB);
cos(/AKC)=cos(/ACB)=4/(6*√2)
cos(/AKC)=cos(/ACB)=2/(3*√2)
cos(/AKC)=√2/3
Ответ: cos(/AKC)=√2/3