Прямая, параллельная стороне AC треугольника ABC, пересекает стороны AB и BC в точках M и
N соответственно. Найдите BN, если MN=12, AC=42, NC=25
Знаешь ответ?
Чтобы оставить ответ, войдите или зарегистрируйтесь.
Ответ или решение 1
seredavaleria81
Рассмотрим треугольники ABC и MBN.
/B - общий.
/BAC=/BMN (т.к. это соответственные углы)
/BCA=/BNM (т.к. это тоже соответственные углы)
Следовательно, эти треугольники подобны по первому признаку подобия.
Тогда по определению подобных треугольников:
AC/MN=BC/BN
AC/MN=BC/(BC-NC)
42/12=BC/(BC-25)
7/2=BC/(BC-25)
7(BC-25)=2BC
7BC-175=2BC
5BC=175
BC=35
BN=BC-NC=35-25=10
Ответ: BN=10
/B - общий.
/BAC=/BMN (т.к. это соответственные углы)
/BCA=/BNM (т.к. это тоже соответственные углы)
Следовательно, эти треугольники подобны по первому признаку подобия.
Тогда по определению подобных треугольников:
AC/MN=BC/BN
AC/MN=BC/(BC-NC)
42/12=BC/(BC-25)
7/2=BC/(BC-25)
7(BC-25)=2BC
7BC-175=2BC
5BC=175
BC=35
BN=BC-NC=35-25=10
Ответ: BN=10
Новые вопросы в разделе Другие предметы
Январий
19.11.2023, 12:25
ЯВКУСНЫЙДОШИРАК)))))))
19.11.2023, 12:24
siddiq
19.11.2023, 12:23
Носова Елена
19.11.2023, 12:22
234567
19.11.2023, 12:21