Все
Математика
Алгебра
Геометрия
Литература
Русский язык
Истоки
Краеведение
Французский язык
Литературное чтение
Астрономия
Природоведение
Родной край
Немецкий язык
Технология
Физика
Английский язык
Обществознание
Химия
Биология
История
О`zbek tili
Окружающий мир
Естествознание
География
Украинский язык
Информатика
Украинская литература
Казахский язык
Физкультура и спорт
Экономика
Музыка
Право
Белорусский язык
МХК
Кубановедение
ОБЖ
Психология
Кыргыз тили
Другие предметы
Показать все предметы
Селезнёв Леонид
03.02.2022, 08:22
Другие предметы

1) Из точки А к окружности с центром О и радиусом R проведена касательная. Докажите,

что точка С касания лежит на основании равнобедренного треугольника ОАВ, у которого ОА = АВ, ОВ = 2R. 2) Проведите касательную к окружности, проходящую через данную точку вне окружности.
Знаешь ответ?

Чтобы оставить ответ, или зарегистрируйтесь.

Ответ или решение 1
Калашников Станислав
1) ОС ⊥ АС по определению. Продлим ОС до точки В так, что СВ = ОС. В ΔОВА отрезок АС является высотой и медианой, так как ОС = ВС по построению, таким образом, ΔОВА — равнобедренный. Откуда АО = АВ и ОВ = 2ОС = 2R.
2) Проведем к данной окружности касательную, проходящую через данную точку А. Сначала соединим точки О и А.
Затем проведем окружности с центром О и радиусом 2R и ОА. Они пересекаются в двух точках В и В1.
ОВ и ОВ1 пересекают окружность в точках С и С1. Соединив их с точкой А, получим две касательные АС и АС1.
ΔОАВ и ΔОАВ1 — равнобедренные АС и АС1 — медианы, значит они являются и высотами. Таким образом, АС ⊥ ОС = R, АС1 ⊥ ОС1 = R, следовательно, АС и АС1 — касательные. Т.к. к окружности можно провести не более двух касательных (задача № 16 § 5), то построение закончено.