Все
Математика
Алгебра
Геометрия
Литература
Русский язык
Истоки
Краеведение
Французский язык
Литературное чтение
Астрономия
Природоведение
Родной край
Немецкий язык
Технология
Физика
Английский язык
Обществознание
Химия
Биология
История
О`zbek tili
Окружающий мир
Естествознание
География
Украинский язык
Информатика
Украинская литература
Казахский язык
Физкультура и спорт
Экономика
Музыка
Право
Белорусский язык
МХК
Кубановедение
ОБЖ
Психология
Кыргыз тили
Другие предметы
Показать все предметы
Знаешь ответ?

Чтобы оставить ответ, или зарегистрируйтесь.

Ответ или решение 1
Орландо

Используя определение логарифма представим -2 в виде: -2 = log1/3(1/3)^(-2) = log1/3(9). Тогда изначальное неравенство будет иметь вид:

log1/3(x^2 + x - 3) < log1/3(9).

После потенцирования по основанию 1/3 получим:

x^2 + x - 3 < 9;

x^2 + x - 12 < 0.

Найдем корни уравнения: x^2 + x - 12 = 0. Корни квадратного уравнения вида ax^2 + bx + c = 0 определяются по формуле: x12 = (-b +- √(b^2 - 4 * a * c) / 2 * a.

x12 = (-1 +- √(1 - 4 * 1 * (48)) / 2 * 1 = (-1 +-7) / 2;

x1 = -4; x2 = 3.

(x - 3)(x + 4) < 0.

x принадлежит (-4; 3).