Стороны треугольника равны 4, 7, 8. Как по отношению к этому треугольнику расположен центр описанной
около него окружности?
Знаешь ответ?
Чтобы оставить ответ, войдите или зарегистрируйтесь.
Ответ или решение 1
Джэн
В остроугольном треугольнике центр описанной окружности находится внутри треугольника. В прямоугольном - на границе и в тупоугольном - снаружи. Осталось определить тип треугольника.
Самый большой угол противолежит самой большой стороне. сторона 8 и угол против неё z
по теореме косинусов
8² = 7²+4²-2*4*7*cos z
2*4*7*cos z = 49+16-64 = 1
cos z = 1 / (2*4*7) = 1/56
Т. к. косинус угла положителен, то сам угол меньше 90°, треугольник остроугольный, и центр описанной окружности у него внутри.
Самый большой угол противолежит самой большой стороне. сторона 8 и угол против неё z
по теореме косинусов
8² = 7²+4²-2*4*7*cos z
2*4*7*cos z = 49+16-64 = 1
cos z = 1 / (2*4*7) = 1/56
Т. к. косинус угла положителен, то сам угол меньше 90°, треугольник остроугольный, и центр описанной окружности у него внутри.
Новые вопросы в разделе Геометрия

Екатерина Чукавина
18.03.2024, 18:42
Malinka4048590594
25.12.2023, 17:01
5antonina7
15.08.2023, 21:05
Меженина
15.08.2023, 21:05