Если в треугольнике ABC заданы длины сторон AB=6 BC=7 AC=8, то sinB равен:
И, по возможности, решите эту задачу: Если в равнобедренном треугольнике угол при основании равен 35 градусов, то угол между боковой стороной и высотой, проведенной к другой боковой стороне, равен:
И, по возможности, решите эту задачу: Если в равнобедренном треугольнике угол при основании равен 35 градусов, то угол между боковой стороной и высотой, проведенной к другой боковой стороне, равен:
Знаешь ответ?
Чтобы оставить ответ, войдите или зарегистрируйтесь.
Ответ или решение 1
alinakossihina92131
1.
По теореме косинусов:
АС² = АВ² + ВС² - 2·АВ·ВС·cos∠B
64 = 36 + 49 - 2·6·7·cos∠B
cos∠B = (36 + 49 - 64) / (2 · 6 · 7) = 21 / (2 · 6 · 7) = 1/4
Основное тригонометрическое тождество:
sin²∠B + cos²∠B = 1
sin∠B = √ (1 - cos²∠B) = √ (1 - 1/16) = √15/4
2.
СН - высота, проведенная к боковой стороне.
∠ВСН - искомый.
Углы при основании равнобедренного треугольника равны:
∠А = ∠С = 35°
∠НВС = ∠А + ∠С = 70°, так как внешний угол треугольника равен сумме двух внутренних, не смежных с ним.
ΔНВС: ∠ВНС = 90°, ∠НВС = 70°, ⇒ ∠ВСН = 20°
По теореме косинусов:
АС² = АВ² + ВС² - 2·АВ·ВС·cos∠B
64 = 36 + 49 - 2·6·7·cos∠B
cos∠B = (36 + 49 - 64) / (2 · 6 · 7) = 21 / (2 · 6 · 7) = 1/4
Основное тригонометрическое тождество:
sin²∠B + cos²∠B = 1
sin∠B = √ (1 - cos²∠B) = √ (1 - 1/16) = √15/4
2.
СН - высота, проведенная к боковой стороне.
∠ВСН - искомый.
Углы при основании равнобедренного треугольника равны:
∠А = ∠С = 35°
∠НВС = ∠А + ∠С = 70°, так как внешний угол треугольника равен сумме двух внутренних, не смежных с ним.
ΔНВС: ∠ВНС = 90°, ∠НВС = 70°, ⇒ ∠ВСН = 20°
Новые вопросы в разделе Геометрия

Екатерина Чукавина
18.03.2024, 18:42
Malinka4048590594
25.12.2023, 17:01
5antonina7
15.08.2023, 21:05
Меженина
15.08.2023, 21:05