Все
Математика
Алгебра
Геометрия
Литература
Русский язык
Истоки
Краеведение
Французский язык
Литературное чтение
Астрономия
Природоведение
Родной край
Немецкий язык
Технология
Физика
Английский язык
Обществознание
Химия
Биология
История
О`zbek tili
Окружающий мир
Естествознание
География
Украинский язык
Информатика
Украинская литература
Казахский язык
Физкультура и спорт
Экономика
Музыка
Право
Белорусский язык
МХК
Кубановедение
ОБЖ
Психология
Кыргыз тили
Другие предметы
Показать все предметы
Евлений
04.10.2022, 16:35
Геометрия

Основанием прямого параллелепипеда ромб со стороной 10 см и острым углом - - 60 градусов.

Угол между меньшей диагональю параллелепипеда и плоскостью его основания равен 45 градусов. Вычислить 1) площадь полной поверхности параллелепипеда 2) сумму площадей боковых поверхностей призм, на которые делится параллелепипед плоскостью меньшего диагонального сечения. как решить?
Знаешь ответ?

Чтобы оставить ответ, или зарегистрируйтесь.

Ответ или решение 1
Арата
Если у ромба угол равен 60 градусов, от меньшая диагональ равна стороне.
Если угол, образованный меньшей диагональю с плоскостью основания, равен 45 градусов, то высота параллелепипеда равна меньшей диагонали основания, то есть равна его стороне.
Поскольку у параллелограмма сумма квадратов сторон равна сумме квадратов диагоналей, то длина большей диагонали ромба равна 10 * √ 3 см.
Тогда полная поверхность параллелепипеда
Sп = 2 * Sосн + 4 * Sб. гр. = 10 * 10 * √ 3 + 4 * 10² = 400 + 100 * √ 3 см²
Меньшее дигональное сечение разбивает параллелепипед на 2 одинаковые правильные треугольные призмы, боковые грани которых - квадраты, поэтому сумма площадей их боковых поверхностей
S = 6 * S б. гр. = 6 * 10² = 600 см²